Lecture 27: The 180° Hybrid.

The second reciprocal directional coupler we will discuss is the 180° hybrid. As the name implies, the outputs from such a device can be 180° out of phase.

There are **two primary objectives** for this lecture. The first is to show that the S matrix of the 180° hybrid is

$$
[S] = \frac{-j}{\sqrt{2}} \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
\end{bmatrix} \quad (7.101), (1)
$$

with reference to the port definitions in Fig. 7.41:

The second primary objective is to illustrate the **three common ways** to operate this device. These are:

1. **In-phase power splitter:**

 With input at port 1 and using column 1 of $[S]$, we can deduce that port 1 is matched, the outputs are ports 2 and 3 (which are in phase with each other) and port 4 is the isolation port.
2. Out-of-phase power splitter:

With input at port 4 and using column 4 of $[S]$, we can deduce that port 4 is matched, the outputs are ports 2 and 3 (which are completely out of phase with each other) and port 1 is the isolation port.

3. Power combiner:

With inputs at ports 2 and 3 and using columns 2 and 3 of $[S]$, we can deduce that both ports 2 and 3 are matched, port 1 will provide the sum of the two input signals and port 4 will provide the difference.

Because of this, ports 1 and 4 are sometimes called the sum and difference ports, respectively.

There are different ways to physically implement a 180° hybrid, as shown in Fig. 7.42. We’ll focus on the ring hybrid and specifically consider the first two applications described above. There is less symmetry in the S matrix (1) for the 180° hybrid
than the quadrature hybrid so we expect less physical symmetry as well.

Ring Hybrid

The ring hybrid (aka the rat race) is shown in Fig. 7.42a:

We’ll analyze this structure using the same even-odd mode approach we applied to the Wilkinson power divider and the branch line coupler in the previous two lectures. In the present case, the physical symmetry plane bisects ports 1 and 2 from 3 and 4 in the figure above.

1. In-phase power splitter. Assume a unit amplitude voltage wave incident on port 1:
As in Lecture 26, proper symmetric and anti-symmetric excitations of this device are required to produce the even and odd mode problems, as shown in Fig. 7.44:

Notice that we’re treating the curved portions of the rat race device as straight sections of TLs. Ignoring this curvature may be a reasonable assumption.

Similar to what we derived in Lecture 26,
\[
B_1 = \frac{1}{2} \Gamma_e + \frac{1}{2} \Gamma_o \quad (7.102a),(2)
\]
\[
B_2 = \frac{1}{2} T_e + \frac{1}{2} T_o \quad (7.102b),(3)
\]
\[
B_3 = \frac{1}{2} \Gamma_e - \frac{1}{2} \Gamma_o \quad (7.102c),(4)
\]
\[
B_4 = \frac{1}{2} T_e - \frac{1}{2} T_o \quad (7.102d),(5)
\]

Each of the even and odd solutions for \(B_i\) \((i=1,\ldots,4)\) can be found by cascading \(ABCD\) matrices, then converting to \(S\) parameters. Since the ports are terminated by matched loads, we can directly determine \(\Gamma_e\) and \(T_e\) from these \(S\) parameters.

As given in the text,
\[
\Gamma_e = -\Gamma_o = \frac{-j}{\sqrt{2}} \quad (7.104a,c),(6)
\]
\[
T_e = T_o = \frac{-j}{\sqrt{2}} \quad (7.104b,d),(7)
\]

Using these values in (2)-(5) produces
\[
B_1 = B_4 = 0 \quad (7.105a,d),(8)
\]
\[
B_2 = B_3 = \frac{-j}{\sqrt{2}} \quad (7.105b,c),(9)
\]

These results in (8) and (9) form the first column of \([S]\) in (1). They indicate that with an input at port 1 and all output ports terminated by matched TLs and loads, the signal is
equally divided in phase at ports 2 and 3, while none is delivered to port 4.

Using the physical symmetry of the circuit and exciting now at port 3, we can appropriately transpose the rows of column 1 to obtain the third column of $[S]$ in (1).

2. **Out-of-phase power splitter.** Assume a unit amplitude voltage wave is incident on port 4.

![Diagram of a power splitter](image)

To generate symmetric and anti-symmetric problems, we’ll excite the circuit at ports 2 and 4, as shown in Fig. 7.45:
These two excitations sum to +1 at port 4 and 0 at port 2, as required.

From Fig. 7.45a, the even mode problem is

From this figure (and the even symmetry), we can write

\[B_1^e = \frac{1}{2} T_e \] and \[B_2^e = \frac{1}{2} \Gamma_e \] (10), (11)

From Fig. 7.45b, the odd mode problem is
From this figure (and the odd symmetry), we can write

\[B_1^o = -\frac{1}{2} T_o = -B_3^o \quad \text{and} \quad B_2^o = -\frac{1}{2} \Gamma_o = -B_4^o \quad (12),(13) \]

Summing (10)-(13), we find

\[B_1 = B_1^e + B_1^o = \frac{1}{2} T_e - \frac{1}{2} T_o \quad (7.106a),(14) \]
\[B_2 = B_2^e + B_2^o = \frac{1}{2} \Gamma_e - \frac{1}{2} \Gamma_o \quad (7.106b),(15) \]
\[B_3 = B_3^e + B_3^o = \frac{1}{2} T_e + \frac{1}{2} T_o \quad (7.106c),(16) \]
\[B_4 = B_4^e + B_4^o = \frac{1}{2} \Gamma_e + \frac{1}{2} \Gamma_o \quad (7.106d),(17) \]

Cascading \(ABCD \) matrices and converting to \(S \) parameters, the text shows that

\[B_1 = B_4 = 0 \quad (7.109a,d),(18) \]
\[B_2 = -B_3 = \frac{j}{\sqrt{2}} \quad (7.109b,c),(19) \]

These values form the fourth column of \([S]\) in (1). They indicate that with excitation at port 4 and all output ports
terminated by matched TLs and loads, port 1 is isolated and the signal is equally split between output ports 2 and 3 with a 180° phase shift between them.

Once again, using the physical symmetry of the circuit and exciting now at port 2, we can appropriately transpose the rows of column 4 to obtain the second column of $[S]$ in (1).

Design of 180° Hybrid

The ring hybrid is extremely easy to design. One first computes the effective permittivities and strip widths for the Z_0 and $\sqrt{2}Z_0$ sections of the device on a chosen substrate. Then after choosing a center frequency, the physical lengths of the $\lambda/4$ and $3\lambda/4$ portions can be calculated, again using the effective permittivities. That’s basically it.

Typical $|S_{1j}|$ results for this device are shown in Fig. 7.46:

![Figure 7.46](image-url)

FIGURE 7.46 S parameter magnitudes versus frequency for the ring hybrid of Example 7.9.
Can you interpret the meaning of these results? How do you expect $|S_{14}|$ and $|S_{32}|$ to behave?