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Polarizabilities of Platonic Solids
Ari Sihvola, Senior Member, IEEE, Pasi Ylä-Oijala, Seppo Järvenpää, and Juha Avelin

Abstract—This article presents results of a numerical effort to
determine the dielectric polarizabilities of the five regular poly-
hedra: tetrahedron, cube, octahedron, dodecahedron, and icosa-
hedron. The polarizability is calculated by solving a surface inte-
gral equation, in which the unknown potential is expanded using
third-order basis functions. The resulting polarizabilities are ac-
curate to the order of 10 4. Approximation formulas are given
for the polarizabilities as functions of permittivity. Among other
results, it is found that the polarizability of a regular polyhedron
correlates more strongly with the number of edges than with the
number of faces, vertices, or the solid angle seen from a vertex.

Index Terms—High-order basis functions, polarizability, poly-
hedra, surface integral equation.

I. INTRODUCTION

WHENadielectricinclusionisputintoahomogeneouselec-
tric field, it causes a perturbation to the total electric field

distribution.Theperturbationisconcentratedintheneighborhood
of the inclusion. In connection with this problem in electrostatics,
theconceptofpolarizabilityofsuchaninclusionis important.The
main component of the “scattered field,” in other words the differ-
ence between the total field when the scatterer is present and the
uniform incident field, is a dipolar field. This electrostatic dipolar
field (which decays according to the inverse cube of the distance
from the scatterer) can be identified as arising from a point dipole.
Subsequently,thepolarizabilityistheratiobetweenthedipolemo-
ment and the amplitude of the incident field.

The present article focuses on the numerical calculation of
the polarizability of inclusions whose shape does not allow an
analytical solution for the electrostatic problem.

In terms of a formal relation, the polarizability is defined by

(1)

where is the uniform external field and the induced dipole
moment. In this equation, the polarizability is assumed to be
equivalent to scalar, meaning that the dipole is parallel to the
external field. Such is the case in the analysis to follow, but it is
important to bear in mind that this is a special case. If we have an
anisotropic inclusion, usually the polarizability is a dyadic. This
happens also in the case if the external shape or internal structure
of the scatterer are nonsymmetric or otherwise complicated.

A simple example of an isotropic scatterer is a homogeneous
sphere. If the sphere has permittivity , and it is embedded in
an environment with permittivity , the polarizability is well
known [1]:

(2)
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where is the volume of the sphere. A closed-form result arises
from the solution of the Laplace equation in the geometry, and is
easy to derive because the internal field is uniform for a spherical
geometry. Although polarizability is a static concept it can also
be used in problems involving time-dependent fields if the size
of the scatterer is much smaller than the wavelength of the field.

But save for ellipsoids whose static response can be rep-
resented in terms of the depolarization factors [2], inclusions
shaped otherwise do not generally have a closed-form expres-
sion for the polarizability. To analyze more complex shapes,
numerical efforts are needed. In this work, the intention is to
give accurate results for the electrostatic polarizabilities of
regular polyhedra, also called as Platonic solids. As mentioned,
for these scatterers, the problem cannot be solved in closed
form, even if they are homogeneous in structure.

There are five regular polyhedra: tetrahedron, hexahedron
(cube), octahedron, dodecahedron, and icosahedron. A regular
polyhedron is a solid, three-dimensional (3-D) figure each face
of which is a regular polygon with equal sides and equal angles.
Also, its vertices are equal. These Platonic polyhedra (with the
number of faces 4, 6, 8, 12, 20, respectively) are fundamental
shapes like a sphere. In electrostatics, they can be described by
very few parameters: the volume and the dielectric permittivity.

Earlier work exists on the electrostatic analysis of dielectric
cubes and other rectangular polyhedra. Already in 1961, Ed-
wards and Van Bladel [3] solved numerically the integral equa-
tion for the potential on the surface of a dielectric cube in a case
where it is placed in uniform field. Reasonable estimates for the
polarizability of the cube were calculated in the end of 1970’s
by Herrick and Senior [4], and also by Eyges and Gianino [5].
In light of the present results, these evaluations were correct to
the order of a few per cent. In recent years, the cube and also
some other polyhedra have been studied with more powerful
computers and numerical schemes as these early results. Avelin
et al. [6], [7] have published approximate formulas from which
the polarizability of a cube, tetrahedron, and octahedron can be
evaluated with inaccuracy below one per mille. Another impor-
tant series of results has been published by Mansfield et al. [8]
where a Monte Carlo-type random walk approach is applied to
the potential problem of heat conduction. Among the results
of their paper, the limiting values (when the permittivity ap-
proaches infinity) for the polarizabilities of polyhedra are given.

In addition to polarizability calculations, there are studies
[9]–[12] in which the aim is to calculate the effective properties
of structures with cube-shaped and other particles. The effective
permittivity (or conductivity) of such a mixture is connected to
the polarizability amplitude of a single scatterer. The polariz-
ability is proportional to the slope of the effective permittivity
curve when the volume fraction of the inclusion phase in the
mixture is very small (the first term of the Taylor expansion).
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In the following, our aim is to present calculations to a very
high accuracy of the polarizabilities of all five Platonic solids,
that are dielectrically homogeneous, for all possible permittivity
values between zero and infinity, and also to evaluate the accu-
racy of these earlier results. In addition, approximate formulas
will be given for the polarizability as functions of permittivity.

Calculation of the polarizabilities is based on a surface inte-
gral equation formulation for the static potential. In the previous
calculations [6], [7] the potential was expressed by piecewise
constant basis functions. To have a more powerful and accurate
representation for the potential, in this paper higher order basis
functions and analytical formulas for singular integrals [13] are
applied. By high-order basis functions we can achieve better ac-
curacy with a lower number of unknowns than by piecewise
constant basis functions. In addition, the accuracy can be fur-
ther increased by using nonuniform meshing with refinements
on the areas where the potential varies most strongly, especially
at the corners of the surfaces.

The results of polarizabilities of polyhedric inclusions can be
applied in the analysis of dielectric mixing formulas, homog-
enization of heterogeneous media, and modeling of composite
materials. Also it is important to remember that the results are
applicable not only in electrostatic and electromagnetic mod-
eling but also in other fields of physics [14] which involve quan-
tities obeying the Laplace equation, like thermal conduction,
diffusion, elasticity, and problems dealing with particle fluxes
driven by chemical potentials.

II. CALCULATION OF THE POLARIZABILITIES

A. Integral Equation Formulation for the Potential Problem

The determination of the polarizability of an inclusion re-
quires solving the electrostatic problem where the inclusion is
located in a uniform external field according to Fig. 1.

The unknown potential, both inside and outside the inclusion,
satisfies the Laplace equation

(3)

Furthermore, far away from the scatterer the potential ap-
proaches the incident potential, which is the linear potential that
gives rise to a uniform field:

(4)

Here, it has been assumed that the incident field is -directed:
. In the region external to the inclusion, the total po-

tential is a sum of the incident potential and a “scattered”
potential. This perturbational potential, the scattered potential,
decays algebraically far away from the inclusion. It can be ex-
panded into multipole series, and the strongest term of this se-
ries is the static dipole contribution to the potential. This term
decays according to , and the corresponding field then obeys
the law . Higher order multipoles give rise to potentials with
higher powers of the distance in the denominator [1].

The dipole moment induced in the scatterer can be identi-
fied with the source of the dipolar component in the scattered
field, and it is proportional to . The ratio between these two,

Fig. 1. Dielectric inclusion embedded in a uniform incident fieldE . Note that
the resulting internal field is not necessarily uniform. Also, close to the inclusion
the external field is suffering a perturbation from the uniform distribution.

the induced dipole moment and the external field, gives us the
polarizability as stated in (1).

An integral equation for the unknown potential function on
the surface of the inclusion in this electrostatic problem reads
as follows [15]:

(5)
In this equation, is the surface of the inclusion,

is the potential of the incident field, and is the total potential
on the surface.1 The ratio of the permittivities is denoted by

, where is permittivity of the inclusion. The outward
normal to the surface is at point .

Equation (5) is a Fredholm integral equation of second kind.
The integration has to be performed over the surface of the in-
clusion, and one might expect numerical difficulties when the
integration point and the field point coincide.

However, in the following we are dealing with polyhedra
which have planar faces. This fact helps us to avoid the singu-
larities to a certain extent because

(6)

if and are located on the same face of the polyhedron. In-
deed, the contribution to the integral vanishes over the whole
face where the field point is located because of the vectors in
the scalar product in (6) are orthogonal ( normal and the gra-
dient tangential to the surface). So, fortunately, the singularity

is automatically excluded. However, if the points and
are, for example, on adjacent faces of a polyhedron which are

not in the same plane, the scalar product does not
vanish. In that case the kernel is a
singular function. Hence, special attention should be put to the
numerical evaluation of the integrals near the corners when the

1Note that this is a 3-D problem which means that the kernel is of type 1=r.
For 2-D problems, the Green function would be logarithmic.
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distance is small. Especially this will be the case on the
edges and vertices of the regular polyhedra considered in this
paper.

Once the potential is known on the surface, the dipole mo-
ment can be calculated from the polarization density of the
inclusion

(7)
which can be transformed from the volume integral into a sur-
face integral using Gauss’s identity

(8)

In the above expressions, is volume of the inclusion,
is electric field within the inclusion and is the outward unit
normal vector to . Finally, the polarizability can be calcu-
lated from (1) using the known value for the dipole moment.

B. Numerical Evaluation of the Potential

The potential function that is needed in the estimation of the
polarizability can be calculated by integral equation (5). The
earlier calculations in the literature are based on piecewise con-
stant approximations for the potential (see, e.g., [6]). To improve
the accuracy in this paper the unknown potential is expressed
by higher order basis functions. Let us suppose that the surface

is divided into planar triangular elements. Then we represent
the unknown potential by a linear combination of basis func-
tions defined on these elements as

(9)

Here, , is the order of a basis function. For ex-
ample, the third-order shape functions can be defined on a plane
triangle as ([18] p. 2.125)

(10)

(a) (b)

Fig. 2. (a) Nodes corresponding to the third-order and (b) linear-shape
functions of a triangle.

where , , are the standard linear shape
functions. The corresponding node points are shown in Fig. 2.
The basis functions are assembled from these shape functions so
that they form continuous functions across the element bound-
aries.

Next we substitute representation (9) into (5). The resulting
discretized equations are multiplied by test functions ,

, and integrated over . This leads to the following
matrix equation:

(11)

Here is the unknown coefficient vector and
the elements of and are given by

(12)

(13)

where is the support of , is the support of and
the kernel . We apply Galerkin’s
method and choose for all and hence

. Thereafter, matrix equation (11) is solved iteratively by the
restarted version of the GMRES method [16].

Let us next consider numerical evaluation of the matrix ele-
ments (12) which include function in the case where the dis-
tance is small. Evaluation of the other terms and evalua-
tion of the elements (12) including for large distances can be
easily done by standard numerical techniques (see, e.g., [17]).
Since the basis and test functions are expressed by polynomial
nodal shape functions of a (plane) triangle, it is sufficient
to consider the following double integral:

(14)

Here, and are plane triangles on so that is a
nodal shape function of and is a nodal shape function
of , respectively.
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(a) (b)

Fig. 3. Triangular meshes of a cube with (a) a linear and (b) square-root refinement on the edges.

First we calculate integral (14) with respect to in closed
form. Graglia [19] presented closed form formulas for integrals

(15)

with scalar and linear basis functions, i.e., for the cases
and . Actually for integral (15) represents the solid
angle in which a triangle is seen at point . For the higher
order basis functions, , the closed form formulas are pre-
sented in [13]. Because the kernel is a singular function if is
not on the same plane as the integration point is located, an ap-
plication of the closed-form formulas will significantly increase
the accuracy of calculation of (15).

After calculating integral (14) with respect to in closed
form the remaining integral with respect to is nonsingular.
Thus, calculation of integral (14) with respect to can be per-
formed by standard numerical techniques like Gaussian quadra-
ture. If and are close to each other, more integration
points should be applied.

In addition, since the potential varies strongly near the cor-
ners of [6], we have applied nonuniform meshing with linear
or square root refinement near the corners. Examples of these
meshes for a cube are displayed in Fig. 3. The numerical exam-
ples demonstrate that the analytical integration formulas com-
bined with a nonuniform meshing and high-order basis func-
tions lead to results with a high accuracy. On the other
hand, nonuniform meshing is not as crucial for “smooth” ob-
jects like dodecahedron or icosahedron as it is for a cube and
tetrahedron which have sharper corners.

III. NUMERICAL RESULTS

The results were calculated using a PC machine equipped
with AMD XP 2000+ processor and 1024 Mbytes of RAM. The
potential in connection with each polyhedron was solved for
123 different values of permittivity. For meshing density con-
taining around 2000 elements and 9000 10 000 unknowns
with third-order basis functions, the solution of a single case

of permittivity and the consequent calculation of the polariz-
ability took typically 500 1000 seconds of computing time,
depending on the value of and other parameters.

The calculation time and accuracy depend on many factors,
such as

• the number of elements;
• the order of basis functions;
• numerical integration;
• refinement of the mesh;
• stopping criterion of GMRES.

Since the singular part of the integral is calculated in closed
form, numerical integration can be performed with a reasonable
accuracy by taking enough integration points.

The critical factor seems to be the number of unknowns,
which is limited by the finite sized computer memory. A better
accuracy can be obtained without increasing the number of un-
knowns by using higher order basis functions and by focusing
the unknowns to the areas where the potential has the strongest
variation.

We tried both second- and third-order basis functions, and
the third-order ones seem to give clearly better results. An ap-
propriate refinement of the mesh, which takes into account the
behavior of the potential at the edges and vertices, can also in-
crease the accuracy. However, it is not clear what is an optimal
refinement, since the potential is approximated by third-order
polynomial basis functions. Although the scope of this paper
was not meshing in particular, we made some experiments on
the mesh refinements with the cube. Fig. 3 shows a mesh with
a linear refinement on the edges so that the triangles keep their
shape as regular as possible. Fig. 3 shows also another mesh
with a square root refinement, where the refinement is applied
only toward the edges. This gives more irregularly shaped trian-
gles. However, numerical experiments show that the latter mesh
gives better results.

We also applied other types of refinements, namely loga-
rithmic and meshes where the meshing density behaves as
and . Here, is the distance from the edge. But, in most
cases, the square root refinement (i.e., ) seems to produce
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TABLE I
LIMITING VALUES (� ! 1 AND � ! 0) FOR THE NORMALIZED

POLARIZABILITIES � = �=(� V ) OF REGULAR POLYHEDRA. BEST

NUMERICAL RESULTS ACCORDING TO THE PRESENT STUDY. THE

ACCURACY IS SUCH THAT THE LAST SIGNIFICANT DIGIT IN THE

RESULTS FOR POLYHEDRA SHOULD BE CORRECT TO �1, EXCEPT

FOR TETRAHEDRON IN WHICH CASE IT IS �5

best results. Similar systematic study has not been carried out
in the case of the other polyhedra. The results of Table I are ob-
tained by calculating the polarizabilities with a uniform mesh
and with a square root refinement. By repeating the calculations
for a couple of various meshing densities, we have concluded
the results of Table I.

The stopping criterion for the GMRES method is

(16)

where is a given error tolerance. We tried , ,
and . The value seems to give sufficient accuracy
and in that case the error is generated by other factors than the
iterative solver.

The results of our calculations for the polarizabilities of the
various polyhedra are shown in Fig. 4 and normalized to the
sphere value in Fig. 5. Also, Table I lists the limiting values
for the five enumerated polarizabilities when the permittivity
ratio approaches either zero or infinity. We are plotting the nor-

Fig. 4. Normalized polarizabilities of the five Platonic solids as functions of
the permittivity. The polarizability of sphere is also shown. Note the similarity
between icosahedron and dodecahedron, and also the similarity between cube
and octahedron. The clearly highest curve belongs to tetrahedron.

Fig. 5. Polarizabilities of the five Platonic solids as functions of the
permittivity as in Fig. 4, normalized to the polarizability of a sphere with the
same volume and permittivity.

malized polarizability defined by , which for a
sphere has a simple from

(17)

Fig. 6 compares the results with those found out by other
researchers. In the literature, results can be found for the cube,
especially for the limiting case of the polarizability of the cube
with infinite permittivity. It can be seen that the accuracy of the
results has increased considerably along with the results from
the two latest years.

What can we say about how close the calculated results for
the polarizability are to the correct values? An indication for the
accuracy comes from the way the increase in the number of un-
knowns and increasing the meshing density affects the polariz-
ability results. The worst case (producing least accurate results)
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Fig. 6. Comparison of the results for the normalized polarizability � of a
cube with permittivity approaching infinity. Earlier results: EG [5], HS [4],
MDG [8], A [6], [7]. The present work is marked by P. The lower graph is a
magnification of the upper one.

is clearly the case of infinite permittivity of the scatterer. From
series of calculations we could estimate that the worst-case inac-
curacy is around for tetrahedra and for icosahedra,
in absolute terms.

Another implication for the accuracy of the results can be
measured by calculating the well-known polarizability of a
sphere with the same code. With 9000 unknowns, the polariz-
ability emerges with accuracy for the worst case.2 Of
course, one should be careful with identifying the reason and
quantity of this inaccuracy with the polyhedric results: firstly,
the sphere is more difficult to model with finite planar surface
elements due to its curved surface, but on the other hand, the
sphere behaves electrically in an “easier” manner because it
does not have corners.

IV. INTERPOLATION FORMULAS

In the following, formulas are given with which accurate es-
timates for the polarizabilities of Platonic solids can be made as

2This means that for infinite permittivity the normalized polarizability is over-
estimated to be 3.0002.

3The website of the Electromagnetics Laboratory of HUT contains a
Java applet with which anybody can calculate the Platonic polarizabilities
according to the interpolation formulas: http://www.hut.fi/Yksikot/Sahkomag-
netiikka/kurssit/animaatiot/Polarisaatio.html

functions of the permittivity contrast.3 A rather satisfactory fit
with the calculated data results from the use of Padé approx-
imations as functions of the permittivity ratio . In the opti-
mization of the coefficients in these interpolation formulas, a
priori knowledge of the polarizabilities was included. It can be
inferred from [20], [21] that if we use the variable

(18)

in the expansion of the polarizability, it behaves as

(19)

For example, for a sphere the normalized polarizability is
.
Note, however, that the Taylor series in terms of converge

quite slowly, and therefore, in calculations that make use of the
following results, the Padé approximation should be used.

A. Tetrahedron

(20)
where and .

A Taylor expansion of this approximation in terms of gives

(21)

B. Cube

(22)
where and .

Taylor expansion of this approximation in terms of

(23)

C. Octahedron

(24)
where and .

Taylor expansion of this approximation in terms of

(25)
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D. Dodecahedron

(26)
where and .

Taylor expansion of this approximation in terms of

(27)

E. Icosahedron

(28)
where and .

Taylor expansion of this approximation in terms of

(29)

V. DISCUSSION

A comparison of the polarizabilities of the various polyhedra
(for example, Fig. 4 or Table I) shows that in terms of magnitude,
the polarizabilities fall in obvious order:

• sphere;
• icosahedron;
• dodecahedron;
• octahedron;
• cube;
• tetrahedron.

Given a volume and permittivity, the sphere has the lowest
value. This minimum behavior of the sphere is a well-known
phenomenon. Then the polarizability order follows the number
of faces of the polyhedron, with icosahedron being closest to
the sphere, and tetrahedron having the highest polarizability.
This sounds reasonable because tetrahedron has the sharpest
corners of these objects, and one could expect that charge
is concentrated there, leading to a strong integrated dipole
moment.

But we can also see from Fig. 4 that the number of faces does
not fully correlate with the magnitude of the polarizability. In
terms of polarizabilities, cube and octahedron resemble each
other, and so also do the dodecahedron and the icosahedron,
despite their clear differences as to the number of faces.

Table II shows the various geometrical parameters of the
five solids. It can be seen that the number of faces is not
the best estimator for the polarizability of the polyhedron.
Stronger correlation exists between the polarizability on one
hand and on the other, either the number of edges, or the
solid angle subtended by the adjacent faces. A tetrahedron
has the sharpest vertex (its solid angle is the smallest of all

TABLE II
GEOMETRIC CHARACTERISTICS OF POLYHEDRA

five). As a side note, it is interesting that the number of faces
and the sharpness of vertices increase differently from one
polyhedron to another: an octahedron has sharper vertices than
the cube, and also the vertex of an icosahedron is sharper
than that of a dodecahedron.

The number of edges seems to a good indicator of the
polarizability: tetrahedron (4 edges) has the highest polariz-
ability, cube and octahedron (12 edges) are in the middle,
and dodecahedron and icosahedron (30 edges) are closest to
the minimum which is the polarizability of a sphere.

There remains the question of isotropy of the polarizability
of the inclusions. Does the dipole moment response depend on
the orientation of the polyhedron with respect to the electric
field? It is obvious that for a sphere, there is no special direction
in the geometry, and hence the polarizability is also a scalar.
Platonic polyhedra display less symmetry than a sphere, but
nevertheless, the remaining symmetry for each polyhedron
is sufficient to degenerate the dyadic relation between the
dipole moment and the external field into a simpler
one, , with a scalar polarizability. This fact can be
appreciated with the following reasoning: the polarizability
relation is described by a real and symmetric matrix in the
lossless and reciprocal case we are considering. Therefore, its
eigenvectors are orthogonal and eigenvalues real [22, p. 195].
If the polarizability of a polyhedron were not a multiple of
a unit dyadic (meaning that the three eigenvalues were not
equal), there should be particular direction which originates
from the shape of the inclusion. But this is forbidden by the
symmetry of the geometrical structure. This kind of reasoning
can be used to motivate the treatment of the polarizabilities
in this paper as a priori scalars.
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