Transmission lines are not the only way to guide EM signals. There are other structures that can accomplish this and have advantages (e.g., some designs) compared to TEs. Examples of such structures are hollow metallic pipes, dielectric fibers, dielectric slabs. The latter don’t even use metal for guiding the wave!

We’ll begin this discussion with the analysis of the rectangular metallic waveguide (Fig. 8-1):

\[\text{[Insert "Types of EM Waves"]} \]

The superposition of fields to simplify solution process:

1. \(E_z = 0 \) and \(H_z \neq 0 \). Called \(\text{TE}^2 \) modes.
2. \(E_z \neq 0 \) and \(H_z = 0 \). Called \(\text{TM}^2 \) modes.
3. \(E_z = 0 \) and \(H_z = 0 \). Leads to indeterminate forms in field equations. \(\text{TEM} \) modes.

These not physically possible in hollow metallic waveguides.
With $E_z = 0$ and $H_z \neq 0$, then the transverse field equations (11)-(10) become

$$H_x = -j \frac{\beta_c}{\beta_e} \frac{\partial H_z}{\partial x}$$ \hspace{1cm} (11)$$

$$H_y = -j \frac{\beta_c}{\beta_e} \frac{\partial H_z}{\partial y}$$ \hspace{1cm} (12)$$

$$E_x = \frac{j \omega \mu}{\beta_e^2} \frac{\partial H_z}{\partial x}$$ \hspace{1cm} (13)$$

$$E_y = \frac{j \omega \mu}{\beta_e^2} \frac{\partial H_z}{\partial y}$$ \hspace{1cm} (14)$$

$$\beta_c^2 = \beta^2 - \beta_z^2$$

Analytically

Once we've solved for H_z, we can use (11)-(14) to solve for all the other field components.

How do determine H_z? In Lecture 3, we derived the wave eqn

$$\nabla^2 H + \beta^2 H = 0$$ \hspace{1cm} (15)$$

in a lossless, source free region. Where

$$\beta^2 = \omega^2 \mu \varepsilon$$ \hspace{1cm} (16)$$

In Cartesian coordinate system, (15) separates into

$$\nabla^2 H_x + \beta^2 H_x = 0$$

$$\nabla^2 H_y + \beta^2 H_y = 0$$

$$\nabla^2 H_z + \beta^2 H_z = 0$$ \hspace{1cm} (17)$$

The one of interest to us is (17). If we can analytically determine H_z from (17) then we can continue.
We'll define \(H_2(x,y,z) = h_2(x,y)e^{-\frac{j\omega z}{c}} \) (18) for \(h_2 \).

Use separation of variables as in Lecture 3 we can determine that

\[h_2(x,y) = [A \cos \beta_x x + B \sin \beta_x x] [C \cos \beta_y y + D \sin \beta_y y] \] (19)

and \(\beta_x^2 + \beta_y^2 + \beta_z^2 = \beta^2 \) (20)

That's it! We now have an analytical solution for \(H_2 \)!

To evaluate the constants in (19), we need to apply the boundary conditions. With PEC walls, \(E_{tan} = 0 \) on all four walls.

For TE\(_z^n\) modes, this means

- \(E_x = 0 \) for \(0 \leq x \leq a \) at \(y = 0 \) and \(b \) (21)
- \(E_y = 0 \) for \(0 \leq y \leq b \) at \(x = 0 \) and \(a \) (22)

Use (13) and (19) to determine \(E_x \) and \(E_y \) from \(H_2 \):

\[E_x(x,y) = -\frac{j\omega}{\beta_z^2} \frac{\partial h_2}{\partial y} = -\frac{j\omega}{\beta_z^2} \left[A \cos \beta_x x + B \sin \beta_x x \right] \left[-C \beta_y \sin \beta_y y + D \beta_y \cos \beta_y y \right] \] (23)

and

\[E_y(x,y) = \frac{j\omega}{\beta_z^2} \frac{\partial h_2}{\partial x} = \frac{j\omega}{\beta_z^2} \left[-A \beta_x \sin \beta_x x + B \beta_x \cos \beta_x x \right] \left[C \cos \beta_y y + D \sin \beta_y y \right] \] (24)
Apply (21):

- $A + y = 0 \Rightarrow e_x(x, y) = \frac{-i\omega y}{\beta_x^2} \left[A \cos \beta_x x + B \sin \beta_x x \right] \cdot D \beta_y = 0$

 Requires $D = 0$.

- $A + y = b \neq 0 \Rightarrow e_x(x, b) = \frac{-i\omega y}{\beta_x^2} \left[A \cos \beta_x x + B \sin \beta_x x \right] \left[-C \beta_y \sin (\beta_y b) \right] \Rightarrow \beta_y b = m \pi, \quad n = 0, 1, 2, \ldots$

 For non-trivial solution requires

 \[
 \beta_y b = m \pi, \quad n = 0, 1, 2, \ldots
 \]

 or

 \[
 \beta_y = \frac{m \pi}{b}, \quad n = 0, 1, 2, \ldots
 \]

 (25)

Apply (22):

- $A + x = 0 \Rightarrow e_y(0, y) = \frac{i\omega y}{\beta_x^2} \left[A \cos \beta_x y + B \sin \beta_x y \right] \Rightarrow \boxed{0}$

 Requires $B = 0$.

- $A + x = a \wedge B = 0 \wedge D = 0$

 Requires for non-trivial solutions that

 \[
 \beta_x a = m \pi
 \]

 or

 \[
 \beta_x = \frac{m \pi}{a}, \quad m = 0, 1, 2, \ldots
 \]

 (26)

Incorporating all these results into (18) (19) gives

\[
H_z(x, y, z) = \sum_{m,n} \left[A_{mn} \cos \left(\frac{m \pi}{a} x \right) \cos \left(\frac{n \pi}{b} y \right) \right] e^{-j \beta_z m n^2}
\]

(27)

A sum

A_{mn} is constant that arose by "absorbing" the three constants A, C (in (19) into a single one. The subscript

indicates its possible this constant different depending

on m, n.
The other field components are \(E_z = 0 \) and

\[
E_x = \frac{j \omega \mu}{k_0} \frac{m_x}{a} A_{mn} \cos\left(\frac{m_x \pi x}{a}\right) \sin\left(\frac{n \pi y}{b}\right) e^{-j k_x x} \tag{28}
\]

\[
E_y = -\frac{j \omega \mu}{k_0} \frac{n \pi}{a} A_{mn} \sin\left(\frac{m_x \pi x}{a}\right) \cos\left(\frac{n \pi y}{b}\right) e^{-j k_x x} \tag{29}
\]

\[
H_x = \frac{j \mu_0}{k_0} \frac{m_x}{a} A_{mn} \sin\left(\frac{m_x \pi x}{a}\right) \cos\left(\frac{n \pi y}{b}\right) e^{-j k_x x} \tag{30}
\]

\[
H_y = \frac{j \mu_0}{k_0} \frac{n \pi}{b} A_{mn} \cos\left(\frac{m_x \pi x}{a}\right) \sin\left(\frac{n \pi y}{b}\right) e^{-j k_x x} \tag{31}
\]

\[
TM^2_{mn} \quad \text{Mode} \quad \text{State results}
\]

The derivation of the field solutions for these modes directly parallels that for \(TE^2 \) modes. (It would be nice to just use duality rather than repeat the derivation. Why isn't that not accurate here?)

For \(TM^2 \) modes, \(E_z \neq 0 \) while \(H_z = 0 \). Applying separation of variables to the wave equation

\[
\nabla^2 E_z + \beta^2 E_z = 0
\]

gives

\[
E_z(x, y, z) = E_z(x, y) e^{-j \beta z}
\]

\[
= (A \cos \beta_x x + B \sin \beta_x x)(C \cos \beta_y y + D \sin \beta_y y) e^{-j \beta z}
\]

\[
= (A \cos \beta_x x + B \sin \beta_x x)(C \cos \beta_y y + D \sin \beta_y y) e^{-j (\beta_x x + \beta_y y)}
\]

\[
\text{(32)}
\]
We can apply the b.c.'s directly to \(E_x(x,y) \). Leads to

\[
E_x(x,y,z) = B_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{-j \beta z} \quad m=1,2,\ldots \quad n=1,2,\ldots
\]

Note that either \(m=0 \) or \(n=0 \) leads to a trivial solution.

The transverse field components can be found from \((7)-(10)\) using \((33)\) and \(H_z=0\).
Lecture 25: TEM, TE and TM Modes for Waveguides. Rectangular Waveguide

Types of EM Waves

We will first develop an extremely interesting property of EM waves that propagate along homogeneous waveguides. This will lead to the concept of “modes” and their classification as

- Transverse Electric and Magnetic (TEM),
- Transverse Electric (TE), or
- Transverse Magnetic (TM).

Proceeding, from the Maxwell curl equations:

\[\nabla \times \mathbf{E} = -j \omega \mu \mathbf{H} \implies \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_x & E_y & E_z \end{vmatrix} = -j \omega \mu \mathbf{H} \]

or

\[\hat{x}: \quad \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = -j \omega \mu H_x \]

\[\hat{y}: \quad -\left(\frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} \right) = -j \omega \mu H_y \]

\[\hat{z}: \quad \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = -j \omega \mu H_z \]
Assuming there is wave propagation in the +z direction, the spatial variation in z is known so that

\[
\frac{\partial (e^{-j\beta_z z})}{\partial z} = -j\beta_z (e^{-j\beta_z z})
\]

Consequently, these curl equations simplify to

\[
\frac{\partial E_z}{\partial y} + j\beta_z E_y = -j\omega \mu H_x \tag{1}
\]

\[
-j\beta_z E_x = -j\omega \mu H_y \tag{2}
\]

\[
\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = -j\omega \mu H_z \tag{3}
\]

We can perform a similar expansion of Ampère's equation \(\nabla \times \vec{H} = j\omega \varepsilon \vec{E} \) to obtain

\[
\frac{\partial H_z}{\partial y} + j\beta_z H_y = j\omega \varepsilon E_x \tag{4}
\]

\[
-j\beta_z H_x = -\frac{\partial H_z}{\partial x} \tag{5}
\]

\[
\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = j\omega \varepsilon E_z \tag{6}
\]

Now, (1)-(6) can be manipulated to produce simple algebraic equations for the transverse (x and y) components of \(\vec{E} \) and \(\vec{H} \). For example, from (1):

\[
H_x = \frac{j}{\omega \mu} \left(\frac{\partial E_z}{\partial y} + j\beta_z E_y \right)
\]
Substituting for E_y from (5) we find

$$H_y = -\frac{j}{\beta_c^2} \left(\omega \varepsilon \frac{\partial E_z}{\partial x} + \beta_z \frac{\partial H_z}{\partial y} \right)$$

or,

$$H_x = \frac{j}{\beta_c^2} \left(\omega \varepsilon \frac{\partial E_z}{\partial y} - \beta_z \frac{\partial H_z}{\partial x} \right) \quad (7)$$

where $\beta_c^2 = \beta^2 - \beta_z^2$ and $\beta^2 = \omega^2 \mu \varepsilon$.

Similarly, we can show that

$$H_y = -\frac{j}{\beta_c^2} \left(\omega \varepsilon \frac{\partial E_z}{\partial x} + \beta_z \frac{\partial H_z}{\partial y} \right) \quad (8)$$

$$E_x = -\frac{j}{\beta_c^2} \left(\beta_z \frac{\partial E_z}{\partial x} + \omega \mu \frac{\partial H_z}{\partial y} \right) \quad (9)$$

$$E_y = \frac{j}{\beta_c^2} \left(-\beta_z \frac{\partial E_z}{\partial y} + \omega \mu \frac{\partial H_z}{\partial x} \right) \quad (10)$$

Most important point: From (7)-(10), we can see that all transverse components of \vec{E} and \vec{H} can be determined from only the axial components E_z and H_z. It is this fact that allows the mode designations TEM, TE, and TM.

Furthermore, we can use superposition to reduce the complexity of the solution by considering each of these mode types separately, then adding the fields together at the end.