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Lecture 16: Properties of S Matrices. 
Shifting Reference Planes. 

 
In Lecture 14, we saw that for reciprocal networks the Z and Y 
matrices are: 

1. Purely imaginary for lossless networks, and 
2. Symmetric about the main diagonal for reciprocal 

networks. 
In these two special instances, there are also special properties 
of the S matrix which we will discuss in this lecture. 
 

 
Reciprocal Networks and S Matrices 

 
In the case of reciprocal networks, it can be shown that 

    tS S  (4.48),(1) 

where  tS  indicates the transpose of  S . In other words, (1) is 
a statement that  S  is symmetric about the main diagonal, 
which is what we also observed for the Z and Y matrices. 
 

 
Lossless Networks and S Matrices 

 
The condition for a lossless network is a bit more obtuse for S 
matrices. As derived in your text, if a network is lossless then 
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      1* t
S S



  (4.51),(2) 

which, as it turns out, is a statement that  S  is a unitary matrix. 
 
This result can be put into a different, and possibly more useful, 
form by pre-multiplying (2) by  tS  

           
1*t t t

S S S S I


     (3) 

 I  is the unit matrix defined as 

  
1 0

0 1

I

 
   
  

  

Expanding (3) we obtain 

 

* * *
11 21 1 11 12 1

* *
12 22 21 22

* *
1 1

1 0

0 1

t

N N

N NN N NN

S

i j

k

S S S S S S

S S S S

S S S S



 



  
   
         
     

   

 
 


   

 

   (4) 

 
Three special cases – 
 
 Take row 1 times column 1: 
 * * *

11 11 21 21 1 1 1N NS S S S S S     (5) 

Generalizing this result gives 
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 *

1

1 1, ,
N

ki ki
k

S S i N


    (4.53a),(6) 

In words, this result states that the dot product of any column 
of  S  with the conjugate of that same column equals 1 (for a 
lossless network). 

 
 Take row 1 times column 2: 
 * * *

11 12 21 22 1 2 0N NS S S S S S      

Generalizing this result gives 

  *

1

0 , ,
N

ki kj
k

S S i j i j


    (4.53b),(7) 

In words, this result states that the dot product of any column 
of  S  with the conjugate of another column equals 0 (for a 
lossless network). 

 
 Applying (1) to (7): If the network is also reciprocal, then  S  

is symmetric and we can make a similar statement concerning 
the rows of  S . 

 
That is, the dot product of any row of  S  with the conjugate 
of another row equals 0 (for a lossless, reciprocal network). 

 

 
Example N16.1 In a homework assignment, the S matrix of a 
two port network was given to be 
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   0.2 0.4 0.8 0.4

0.8 0.4 0.2 0.4

j j
S

j j

  
    

 

Is the network reciprocal? Yes, because    t
S S . 

 
Is the network lossless? This question often cannot be answered 
simply by quick inspection of the S matrix. 
 
Rather, we will systematically apply the conditions stated above 
to the columns of the S matrix: 
 *C1 C1 :      0.2 0.4 0.2 0.4 0.8 0.4 0.8 0.4 1j j j j       
 *C2 C2 : Same = 1 
 *C1 C2 :      0.2 0.4 0.8 0.4 0.8 0.4 0.2 0.4 0j j j j       
 *C2 C1 : Same = 0 
Therefore, the network is lossless. 
 
As an aside, in Example N15.1 of the text, which we saw in the 
last lecture, 

  0.1 0.8

0.8 0.2

j
S

j

 
  
 

 

This network is obviously reciprocal, and it can be shown that 
it’s also lossy. (Go ahead, give it a try.) 
 

 
Example N16.2 (Text Example 4.4). Determine the S 
parameters for this T-network assuming a 50-  system 
impedance, as shown. 
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1V 

1V 

0 50Z  

 S

2V 

2V 

0 50Z  1V AV 2V

inZ
 

First, take a general look at the circuit: 
 It’s linear, so it must also be reciprocal. Consequently,  S  

must be symmetrical (about the main diagonal). 
 The circuit appears unchanged when “viewed” from either 

port 1 or port 2. Consequently, 11 22S S . 
Based on these observations, we only need to determine 11S  and 

21S  since 22 11S S  and 12 21S S . 
 
Proceeding, recall that 11S  is the reflection coefficient at port 1 
with port 2 matched: 

2

2

1
11 11 0

1 0
V

V

V
S

V






 


    

The input impedance with port 2 matched is 
  in 8.56 141.8 8.56 50 50.00Z        

which (it will turn out not coincidentally) equals 0Z ! With this 
Zin: 

in 0

i 0
11

n

0
Z Z

Z Z
S 





 

which also implies 22 0S  . 
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Next, for 21S  we apply a 1V   with port 2 matched and measure 

2V  : 

 
2

2
21

1 0V

V
S

V 






  

At port 1, which we will also assume is the terminal plane, 

1 1 1V V V   . However, with 50-  termination at port 2, 1 0V    
(since 11 0  ). Therefore, 1 1V V  . Similarly, 2 2V V  . 
 
These last findings imply we can simply use voltage division to 
determine 2V   (from 2V ): 

 
 

  1 1

141.8 50 8.56
0.8288

141.8 50 8.56 8.56AV V V


  
 

 

and 2 1 1

50
0.8538 0.8288 0.7077

50 8.56 AV V V V    


    

Therefore, 22 1 1210.7077
1

2
V V S S      

 
The complete S matrix for the given T-network referenced to 50-
 system impedance is therefore 

  

1
0

2
1

0
2

S

 
 
 
 
  

 

 
Lastly, notice that when port 2 is matched 
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2

21 21 0

1

2 V
S T  

   

so that 
2

2

21 0

1

2V
T  

  

which says that half of the power incident from port 1 is 
transmitted to port 2 when port 2 is matched. We can now see 
why this T-network is called a 3-dB attenuator. 
 

 
Shifting Reference Planes 

  
Recall that when we defined S parameters for a network, 
terminal planes were defined for all ports. These are arbitrarily 
chosen phase 0   locations on TLs connected to the ports. 
 
It turns out that S parameters change very simply and 
predictably as the reference planes are varied along lossless TLs. 
This fact can prove handy, especially in the lab. 
 
Referring to Fig 4.9: 
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1V 
1t

1V 

1 0z 

1t 

1V 

1 1z l 
1V 

2V 
2t

2V 

2 0z 

2t 

2V 

2 2z l 
2V 

3V 
3t

3V 

3 0z 

3t 

3V 

3 3z l 
3V 

 S

NV 
Nt

NV 

0Nz 

Nt 

NV 

N Nz l 
NV 

 S

 
To be specific, let  S  be the scattering matrix of a network with 
reference planes (i.e., ports) at nt , while  S  is the scattering 
matrix of the network with the reference planes shifted to nt  . 
 
Applying the definition of the scattering matrix in these two 
situations yields 
  V S V          (4.54a),(8) 

and  V S V            (4.54b),(9) 

 
We’ve shifted the reference planes along lossless TLs. Hence, 
these voltage amplitudes only change phase as 

 nj
n nV V e     (4.55a),(10) 

and nj
n nV V e     (4.55b),(11) 

where n n nl  . Remember, these are the phase shifts when the 
phase planes are all moved away from the ports. 
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It is easy to prove these phase shift relationships in (10) and 
(11). First, we know that   n nj z

n n nV z V e   . Hence,  n nV l    
n nj l

nV e  . Therefore,   nj
n n n nV V l V e       , which is (10). 

 
Likewise,   n nj z

n n nV z V e    so that   n nj l
n n nV l V e    . 

Therefore,   nj
n n n nV V l V e       , which is (11). 

 
Now, armed only with this information in (10) and (11), we can 
express  S  in terms of  S . Writing (10) and (11) in matrix 
form and substituting these into (8) 
  V S V          (8) 

gives: 

  
1 10 0

0 0N N

j j

j j

e e

V S V

e e

 

 



 



   
                
      

   (12) 

 
The inverse of a diagonal matrix is simply a diagonal matrix 
with inverted diagonal elements. So, we can pre-multiply (12) 
by the inverse of the first matrix (which is known, and is also 
not singular) giving: 

  
1 10 0

0 0N N

j j

j j

e e

V S V

e e

 

 

 

 

 

   
                
      

   (13) 

 
Comparing (13) with (9) we can immediately deduce that: 
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    
1 10 0

0 0N N

j j

j j

e e

S S

e e

 

 

 

 

   
         
      

   (4.56),(14) 

Multiplying out this matrix equation gives: 

  m nj
mn mnS S e      (15) 

and when m n , 

 2 nj
nn nnS S e    (16) 

The factor of two in this last exponent arises since the wave 
travels twice the electrical distance n : once towards the port 
and once back to the new terminal plane nt  . 
 
Equations (15) and (16) provide the simple transformations for S 
parameters when the phase planes are shifted away from the 
ports. 
 

Many times you’ll find that your measured S parameters differ 
from simulation by a phase angle, even though the magnitude is 
in good agreement. This likely occurred because your terminal 
planes were defined differently in your simulations than was set 
during measurement. 

 
 


