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Lecture 16: Properties of S Matrices.
Shifting Reference Planes.

In Lecture 14, we saw that for reciprocal networks the Z and Y
matrices are:
1. Purely imaginary for lossless networks, and
2. Symmetric about the main diagonal for reciprocal
networks.
In these two special instances, there are also special properties
of the S matrix which we will discuss in this lecture.

Reciprocal Networks and S Matrices

In the case of reciprocal networks, it can be shown that
[s]=[s] (4.48),(1)
where [S]t indicates the transpose of [S]. In other words, (1) is

a statement that [S] IS symmetric about the main diagonal,
which is what we also observed for the Z and Y matrices.

Lossless Networks and S Matrices

The condition for a lossless network is a bit more obtuse for S
matrices. As derived in your text, if a network is lossless then
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[s] ={[sT}

(4.51),(2)

which, as it turns out, is a statement that [S] is a unitary matrix.

This result can be put into a different, and possibly more useful,

form by pre-multiplying (2) by [S]t

[S]-[s] =[s]{[s]] =[]

[I ] is the unit matrix defined as

1 0
[1]=
_O 1_
Expanding (3) we obtain
I — ] >
S, S, - S| 'Sl*l S Sl*N_ -
L S.12 S,, | : .S.;l S, | ; _
; : ; - 0
BN SNN_J Su Sw | -

Three special cases —

e Take row 1 times column 1:
S11811 + S21821 et SleNl =1
Generalizing this result gives

(3)

(4)

()
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N
D> SiSi=1 i=1..,N (4.53a),(6)
k=1

In words, this result states that the dot product of any column
of [S] with the conjugate of that same column equals 1 (for a
lossless network).

e Take row 1 times column 2;
S1131*2 + S21322 +eeet SleNZ =0

Generalizing this result gives

N

D 58S =0 V(i,j)i#] (4.53b),(7)
k=1

In words, this result states that the dot product of any column
of [S] with the conjugate of another column equals 0 (for a
lossless network).

* Applying (1) to (7): If the network is also reciprocal, then [S]
IS symmetric and we can make a similar statement concerning
the rows of [S].

That is, the dot product of any row of [S] with the conjugate
of another row equals O (for a lossless, reciprocal network).

Example N16.1 In a homework assignment, the S matrix of a
two port network was given to be
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5] 0.2+ j0.4 0.8-j0.47
108-j0.4 0.2+ j0.4]
Is the network reciprocal? Yes, because [S]t =[S].

Is the network lossless? This question often cannot be answered
simply by quick inspection of the S matrix.

Rather, we will systematically apply the conditions stated above
to the columns of the S matrix:

*Cl.CI: (O.2+ j0.4)(0.2— j0.4)+(0.8— j0.4)(0.8+ j0.4) =1
eC2.-C2":Same =1

*C1-C2": (0.2 + j0.4)(0.8 + j0.4) + (0.8 — j0.4)(0.2 — j0.4) =0
*C2-C1:Same=0

Therefore, the network is lossless.

As an aside, in Example N15.1 of the text, which we saw in the

last lecture,
0.1 j0.8
[s]=| .
j0.8 0.2

This network is obviously reciprocal, and it can be shown that
it’s also lossy. (Go ahead, give itatry.)

Example N16.2 (Text Example 4.4). Determine the S
parameters for this T-network assuming a 50-Q system
Impedance, as shown.
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Vs 856Q 8560 1 v V)

First, take a general look at the circuit:

* It’s linear, so it must also be reciprocal. Consequently, [S]
must be symmetrical (about the main diagonal).

e The circuit appears unchanged when “viewed” from either
port 1 or port 2. Consequently, S;, =S,,.

Based on these observations, we only need to determine S, and

S, since S,, =S, and S, =S,,.

Proceeding, recall that S, is the reflection coefficient at port 1
with port 2 matched:
VL =1y
Vl+ V, =0
The input impedance with port 2 matched is

Z,, =8.56+141.8|(8.56 +50) Q2 =50.00 Q

which (it will turn out not coincidentally) equals Z,! With this
Zin:

S, =

V2+ =0

— “~in
Sll -

which also implies S,, =0.
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Next, for S,, we apply a V," with port 2 matched and measure
V,:
_V2_

Vl+ V, =0
At port 1, which we will also assume is the terminal plane,
V, =V," +V, . However, with 50-Q termination at port 2, V" =0
(since I';; =0). Therefore, V, =V,". Similarly, V, =V, .

SZl

These last findings imply we can simply use voltage division to
determine V, (from V,):
_ 141.8|(50+8.56)
" 141.8|(50+8.56)+8.56
50

.V, =0.8288V,

and V,=—-V,=0.8538-0.8288V, =0.7077V,
50+8.56
Therefore, V, =0.7077V,” = S, = % =S,

The complete S matrix for the given T-network referenced to 50-
Q) system impedance is therefore

-
0 —
R

Lastly, notice that when port 2 is matched
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1
Sy = ﬁ =Ty v, =0
2 1
so that Tyl o = >

which says that half of the power incident from port 1 is
transmitted to port 2 when port 2 is matched. We can now see
why this T-network is called a 3-dB attenuator.

Shifting Reference Planes

Recall that when we defined S parameters for a network,
terminal planes were defined for all ports. These are arbitrarily
chosen phase =0° locations on TLs connected to the ports.

It turns out that S parameters change very simply and
predictably as the reference planes are varied along lossless TLs.

This fact can prove handy, especially in the lab.

Referring to Fig 4.9:
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To be specific, let [S] be the scattering matrix of a network with
reference planes (i.e., ports) at t , while [S’] Is the scattering
matrix of the network with the reference planes shifted to t .

Applying the definition of the scattering matrix in these two
situations yields

Vo |=[s]-[v"] (4.54a),(8)
and Ve =[s] v (4.54b),(9)

We’ve shifted the reference planes along lossless TLs. Hence,
these voltage amplitudes only change phase as

V' =V et (4.55a),(10)

and V' =V e (4.55b),(11)
where 6, = S.|,. Remember, these are the phase shifts when the
phase planes are all moved away from the ports.
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It is easy to prove these phase shift relationships in (10) and
(11). First, we know that V" (z,)=V,"e””*. Hence, V," (-1,) =
V,'e" % Therefore, V," =V." (-I,)=V, e, which is (10).
Likewise, V. (z,)=V.e so that V, (-l )=V, e "
Therefore, V.- sVn‘(—In) Ve "% which is (11).

Now, armed only with this information in (10) and (11), we can
express [S'] in terms of [S]. Writing (10) and (11) in matrix
form and substituting these into (8)

v =[s]v7] ©®)

gives:

e

16

ejeN

e

[ A6

e_ JQN

[v"]

(12)

The inverse of a diagonal matrix is simply a diagonal matrix
with inverted diagonal elements. So, we can pre-multiply (12)
by the inverse of the first matrix (which is known, and is also

not singular) giving:

V]

e_ Jel

0

e_ 10N

[5]

_e_ ng

0

e_ jeN

(V7] (13)

Comparing (13) with (9) we can immediately deduce that:
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_e—j91 0 _e_j91 O
[S']= [s] (4.56),(14)
0 e % 0 e I
Multiplying out this matrix equation gives:
Sun = S """ (15)

and when m=n,

Sy =Spe (16)
The factor of two in this last exponent arises since the wave
travels twice the electrical distance 6,: once towards the port
and once back to the new terminal plane t_'.

Equations (15) and (16) provide the simple transformations for S
parameters when the phase planes are shifted away from the
ports.

Many times you’ll find that your measured S parameters differ
from simulation by a phase angle, even though the magnitude is
in good agreement. This likely occurred because your terminal
planes were defined differently in your simulations than was set
during measurement.




