Lecture 14: Transformers.
Ideal Transformers

In general, a transformer is a multi-port ac device that converts voltages, currents, and impedances from one value to another. This device only performs this transformation for time varying signals.

Here, we will consider the transformer circuit shown below:

The time varying current $I_p(t)$ in the “primary” circuit produces a magnetic flux density $\vec{B}_p(t)$ in and around coil p. Similarly, the “secondary” coil current $I_s(t)$ produces $\vec{B}_s(t)$. The total magnetic flux density is the sum $\vec{B}(t) = \vec{B}_p(t) + \vec{B}_s(t)$.

We will assume that the transformer core has a very large relative permeability μ_r. Consequently, $\vec{B}(t)$ will almost exclusively be contained within the core. This $\vec{B}(t)$ forms closed loops within the core. (We can think of this as a “self-shielded” core.)
The magnetic flux ψ_m is defined simply as the integral of $\overline{B}(t)$ over a cross section of the core:

$$\psi_m(t) = \int_s \overline{B}(t) \cdot d\vec{s} = \int_s \left[\overline{B}_p(t) + \overline{B}_s(t) \right] \cdot d\vec{s}$$

$$= \psi_{m,p}(t) + \psi_{m,s}(t)$$

(1)

With $\overline{B}(t)$ contained exclusively within the core, $\psi_m(t)$ will be the same throughout the transformer (though it will vary with time).

Assuming $\overline{B}(t)$ doesn’t vary significantly over a cross section of the core, the magnetic flux will be proportional to the number of (identical) coil turns, the geometry of the coil, and the current in the coil:

$$\psi_{m,j}(t) = N_j A_l I_j(t) \text{ [Wb/turn]}$$

(6.5),(2)

A_l is the inductance constant [H/turn2] of the core and $j = p, s$.

This A_l is provided by the manufacturer of the cores that you use for your transformers (and inductors). Table D.2 (p. 356) in your text lists A_l for various cores used in the NorCal 40A.
Note that A_l can be a very strong function of frequency.

Induced Voltage

As we know, a time varying magnetic field through a coil of wire produces (or “induces”) a voltage between the ends of the coil. This miraculous phenomenon was discovered and quantified by Michael Faraday and others and is mathematically stated in Faraday’s law as

$$emf = -N \frac{d\psi_m}{dt} \text{ [V]}$$

(3)

where N is the number of (identical) turns of the coil.

This emf is a “net push” around a circuit that causes electrons to move. Voltage and emf are closely related concepts. We can
determine the induced voltage \(V(t) \) using the following equivalent circuit:

\[
\begin{align*}
\text{Primary} & \quad \bar{B} \cdot \bar{d}\bar{s} > 0 \\
\text{Secondary} & \quad \bar{B} \cdot \bar{d}\bar{s} < 0
\end{align*}
\]

The **polarity** of the lumped *emf* source is set by the direction of the current: a voltage source has current entering the negative terminal. The **sign** of the *emf* source is due to the direction of \(\bar{d}\bar{s} \) (by the RHR) and the assumed direction for \(\bar{B} \) (and hence \(\psi_m \)).

From these equivalent circuits and applying (3), the sinusoidal steady state voltage at the primary and secondary are both of the form

\[V = j\omega N\psi_m \quad (6.6),(4) \]

where \(V \) and \(\psi_m \) are now phasors. (Note carefully that both have the same sign.) Specifically, the primary and secondary voltages are
Dividing these two equations gives

\[
\frac{V_p}{V_s} = \frac{N_p}{N_s} = n
\]

where \(n \) is called the turns ratio.

Interestingly, we see here that the “output” voltage \(V_s \) can be different in amplitude than the “input” voltage \(V_p \)

\[
V_s = \frac{N_s}{N_p} V_p
\]

Note that if \(N_s > N_p \), the secondary voltage is larger in amplitude than the primary voltage. Very interesting.

- If \(N_s > N_p \), called a step-up transformer,
- If \(N_s < N_p \), called a step-down transformer.

Primary and Secondary Currents

Next we will consider the electrical currents in the primary and secondary of the transformer. From (1), the magnetic flux is the sum of the two magnetic fluxes from each coil

\[
\psi_m = \psi_{m,p} + \psi_{m,s}
\]

Using (2) and noting that \(\psi_{m,s} \) will be negative since the direction of the current is assumed OUT of the secondary, then

\[
\psi_m = N_p A_l I_p - N_s A_l I_s
\]
Solving for \(I_p \) we find that

\[
I_p = \frac{\psi_m}{N_p A_l} + \frac{N_s I_s}{N_p} \tag{6.13},(11)
\]

The magnetic flux \(\psi_m \) is not a circuit quantity. To derive an equivalent circuit for the transformer we need to express \(\psi_m \) in terms of electrical circuit quantities.

To accomplish this, we use (5) in the first term of (11) yielding

\[
\frac{\psi_m}{N_p A_l} = \frac{V_p}{j\omega N_p^2 A_l} \tag{12}
\]

where

\[
L_p \equiv N_p^2 A_l \tag{6.23},(13)
\]

is the inductance of the primary coil. Substituting this result (12) back into (11) gives

\[
I_p = \frac{V_p}{j\omega L_p} + \frac{N_s I_s}{N_p} \tag{6.14},(14)
\]

This last result is extremely illuminating. We see that the current in the primary is the sum of two parts: (1) magnetization current and (2) transformer current.

(1) Magnetization Current. The first term in (14) does not involve the secondary in any way. In other words, this is the current the transformer would draw regardless of the turns ratio of the transformer.
(2) **Transformer Current.** The second term in (14) directly depends on the secondary because of the N_s term. This component of the primary current is a transformed secondary current, in a manner similar to the voltage in (7), though inversely.

Ideal Transformer

If the magnetization current $V_p/(j\omega L_p)$ in (14) is very small in magnitude relative to the transformer current $(N_s/N_p)I_s$ then such a device is called an *ideal transformer*. The equations for an ideal transformer are from (7) and (14):

\[
V_s = \frac{N_s}{N_p} V_p \quad (6.15),(15)
\]

and

\[
I_s = \frac{N_p}{N_s} I_p \quad (6.16),(16)
\]

The circuit symbol for an ideal transformer is
Discussion

1. We can surmise from (16) that for an ideal step-up transformer $I_s < I_p$. Therefore, while from (15) the voltage increases by N_s / N_p, the current has decreased by N_p / N_s.

In the NorCal 40A, the transformer T1 is used to step up the current from the Driver Amplifier to the Power Amplifier. For T1, $N_p = 14$ and $N_s = 4$ so that $I_s = (N_p / N_s) I_p = 7/2 \cdot I_p$.

Because of this current behavior, the power input to the primary equals the power output from the secondary:

$$P_p(t) = V_p(t) I_s(t)$$

$$P_s(t) = V_s(t) I_s(t) = \frac{N_s}{N_p} V_p(t) \cdot \frac{N_p}{N_s} I_p(t) = V_p(t) I_p(t)$$

Therefore, the input power $P_p(t)$ equals the output power $P_s(t)$, as would be expected.

2. With an impedance Z_s connected to the secondary, then

$$\frac{V_s}{I_s} = Z_s$$

Substituting for V_s and I_s in this equation using (15) and (16)

$$\frac{(N_s / N_p) \cdot V_p}{(N_p / N_s) \cdot I_p} = Z_s$$
or

\[
\frac{V_p}{I_p} = \left(\frac{N_p}{N_s} \right)^2 Z_s
\]

In other words, the **effective input impedance** \(Z_{p,\text{eff}}\) at the primary terminals (the ratio \(V_p/I_p\)) is

\[
Z_{p,\text{eff}} = \left(\frac{N_p}{N_s} \right)^2 Z_s \quad [\Omega] \quad (6.19),(19)
\]

The ideal transformer “transforms” the load impedance from the secondary to the primary. (Remember that this is only true for sinusoidal steady state signals.)

3. For maximum power transfer, we design a circuit so that the load is matched to the output resistance. We can use transformers as **matching networks**.

For example, in the NorCal 40A, if T3 were an ideal transformer, it could be used to transform the output impedance from the RF Mixer (3 k\(\Omega\)) to match the input impedance of the IF Filter (200 \(\Omega\)). Using (19):

\[
Z_s = \left(\frac{N_s}{N_p} \right)^2 Z_p = \left(\frac{6}{23} \right)^2 3000 = 204.2 \, \Omega
\]

which is **very** close to the desired 200 \(\Omega\).

But T3 is **not** an ideal transformer! What to do…😊